How do you rewrite rational numbers and decimals, take square roots and cube roots, and approximate irrational numbers?

Expressing Rational Numbers as Decimals

A rational number is any number that can be written as a ratio in the form $\frac{a}{b}$, where a and b are integers and b is not 0 . Examples of rational numbers are 6 and 0.5.

$$
6 \text { can be written as } \frac{6}{1} . \quad 0.5 \text { can be written as } \frac{1}{2} .
$$

Every rational number can be written as a terminating decimal or a repeating decimal. A terminating decimal, such as 0.5 , has a finite number of digits. A repeating decimal has a block of one or more digits that repeat indefinitely.

EXAMPLE 1

COMMON
8.NS. 1

Write each fraction as a decimal.
A $\frac{1}{4}$
0.25
$4 \longdiv { 1 . 0 0 }$
Remember that the fraction bar means "divided by." Divide the numerator by the denominator.
$\frac{-8}{20}$
-20
$\frac{1}{4}=0.25$
B $\frac{1}{3}$
3 $\begin{array}{r}0.333 \\ 1.000\end{array}$
$\frac{-9}{10}$

10
-9

1
$\frac{1}{3}=0 . \overline{3}$
Divide until the remainder is zero, adding zeros after the decimal point in the dividend as needed.

Personal Math Trainer Online Assessment and Intervention

Write each fraction as a decimal.

1. $\frac{5}{11}$
2. $\frac{1}{8}$
3. $2 \frac{1}{3}$
\qquad

Expressing Decimals as Rational Numbers

You can express terminating and repeating decimals as rational numbers.

EXAMPLE 2

 COMMONCORE

Write each decimal as a fraction in simplest form.

My Notes

(A) 0.825

The decimal 0.825 means " 825 thousandths." Write this as a fraction.
$\frac{825}{1000}$ To write "825 thousandths", put 825 over 1000.
Then simplify the fraction.

$$
\begin{aligned}
\frac{825 \div 25}{1000 \div 25} & =\frac{33}{40} \quad \text { Divide both the numerator and the denominator by } 25 . \\
0.825 & =\frac{33}{40}
\end{aligned}
$$

B $0 . \overline{37}$
Let $x=0 . \overline{37}$. The number $0 . \overline{37}$ has 2 repeating digits, so multiply each side of the equation $x=0 . \overline{37}$ by 10^{2}, or 100 .

$$
\begin{aligned}
x & =0 . \overline{37} \\
(100) x & =100(0 . \overline{37}) \\
100 x & =37 . \overline{37} \quad 100 \text { times } 0 . \overline{37} \text { is } 37 . \overline{37} .
\end{aligned}
$$

Because $x=0 . \overline{37}$, you can subtract x from one side and $0 . \overline{37}$ from the other.
$100 x=37 . \overline{37}$

| $-x \quad-0 . \overline{37}$ |
| :--- | :--- |

$99 x=37$
$37 . \overline{37}$ minus $0 . \overline{37}$ is 37 .
Now solve the equation for x. Simplify if necessary.

$$
\begin{aligned}
\frac{99 x}{99} & =\frac{37}{99} \\
x & =\frac{37}{99}
\end{aligned} \quad \text { Divide both sides of the equation by } 99 .
$$

YOUR TURN

Write each decimal as a fraction in simplest form.
4. 0.12 \qquad 5. $0 . \overline{57}$
6. 1.4 \qquad

Personal Math Trainer

Finding Square Roots and Cube Roots

The square root of a positive number p is x if $x^{2}=p$. There are two square roots for every positive number. For example, the square roots of 36 are 6 and -6 because $6^{2}=36$ and $(-6)^{2}=36$. The square roots of $\frac{1}{25}$ are $\frac{1}{5}$ and $-\frac{1}{5}$. You can write the square roots of $\frac{1}{25}$ as $\pm \frac{1}{5}$. The symbol $\sqrt{ }$ indicates the positive, or principal square root.

A number that is a perfect square has square roots that are integers. The number 81 is a perfect square because its square roots are 9 and -9 .

The cube root of a positive number p is x if $x^{3}=p$. There is one cube root for every positive number. For example, the cube root of 8 is 2 because $2^{3}=8$. The cube root of $\frac{1}{27}$ is $\frac{1}{3}$ because $\left(\frac{1}{3}\right)^{3}=\frac{1}{27}$. The symbol $\sqrt[3]{ }$ indicates the cube root.

A number that is a perfect cube has a cube root that is an integer. The number 125 is a perfect cube because its cube root is 5 .

EXAMPLE 3

Solve each equation for x.

A

$$
\begin{array}{ll}
x^{2}=121 & \\
x^{2}=121 & \text { Solve for } x \text { by taking the square root of both sides. } \\
x= \pm \sqrt{121} & \text { Apply the definition of square root. } \\
x= \pm 11 & \text { Think: What numbers squared equal 121? }
\end{array}
$$

The solutions are 11 and -11 .
B $x^{2}=\frac{16}{169}$

$$
\begin{aligned}
x^{2} & =\frac{16}{169} & & \text { Solve for } x \text { by taking the square root of both sides. } \\
x & = \pm \sqrt{\frac{16}{169}} & & \text { Apply the definition of square root. } \\
x & = \pm \frac{4}{13} & & \text { Think: What numbers squared equal } \frac{16}{169} ?
\end{aligned}
$$

The solutions are $\frac{4}{13}$ and $-\frac{4}{13}$.

C $729=x^{3}$

$$
\begin{aligned}
\sqrt[3]{729} & =\sqrt[3]{x^{3}} & & \text { Solve for } \times \text { by taking the cube root of both sides. } \\
\sqrt[3]{729} & =x & & \text { Apply the definition of cube root. } \\
9 & =x & & \text { Think: What number cubed equals } 729 ?
\end{aligned}
$$

The solution is 9 .
D $\quad x^{3}=\frac{8}{125}$
$\sqrt[3]{x^{3}}=\sqrt[3]{\frac{8}{125}} \quad$ Solve for \times by taking the cube root of both sides.
$x=\sqrt[3]{\frac{8}{125}} \quad$ Apply the definition of cube root.
$x=\frac{2}{5}$
Think: What number cubed equals $\frac{8}{125}$?
The solution is $\frac{2}{5}$.

Personal Math Trainer Online Assessment and Intervention
() my.hrw.com

YOUR TURN

Solve each equation for \boldsymbol{x}.

7. $x^{2}=196$ \qquad 8. $x^{2}=\frac{9}{256}$ \qquad
8. $x^{3}=512$ \qquad 10. $x^{3}=\frac{64}{343}$ \qquad

EXPLORE ACTIVITY

Estimating Irrational Numbers

Irrational numbers are numbers that are not rational. In other words, they cannot be written in the form $\frac{a}{b}$, where a and b are integers and b is not 0 . Square roots of perfect squares are rational numbers. Square roots of numbers that are not perfect squares are irrational. The number $\sqrt{3}$ is irrational because 3 is not a perfect square of any rational number.

Estimate the value of $\sqrt{2}$.
A Since 2 is not a perfect square, $\sqrt{2}$ is irrational.
B To estimate $\sqrt{2}$, first find two consecutive perfect squares that 2 is between. Complete the inequality by writing these perfect squares in the boxes.
C Now take the square root of each number.

D Simplify the square roots of perfect squares.
$\sqrt{2}$ is between \qquad and \qquad -.

E Estimate that $\sqrt{2} \approx 1.5$.

F To find a better estimate, first choose some numbers between 1 and 2 and square them. For example, choose 1.3, 1.4, and 1.5.
$1.3^{2}=\quad 1.4^{2}=\quad 1.5^{2}=$
Is $\sqrt{2}$ between 1.3 and 1.4? How do you know?
\qquad
\qquad
Is $\sqrt{2}$ between 1.4 and 1.5? How do you know?
\qquad
\qquad
$\sqrt{2}$ is between \qquad and \qquad so $\sqrt{2} \approx$ \qquad .

G Locate and label this value on the number line.

Reflect

11. How could you find an even better estimate of $\sqrt{2}$?
12. Find a better estimate of $\sqrt{2}$. Draw a number line and locate and label your estimate.
$\sqrt{2}$ is between \qquad and \qquad so $\sqrt{2} \approx$ \qquad .
\qquad
\qquad

13. Estimate the value of $\sqrt{7}$ to two decimal places. Draw a number line and locate and label your estimate.
$\sqrt{7}$ is between \qquad and \qquad , so $\sqrt{7} \approx$ \qquad .

