\qquad
\qquad
\qquad
5. Review of exponents: Recall that

$$
x^{4} \rightarrow \text { " } x \text { to the fourth power" means " } 4 \text { factors of } x "
$$

$3^{4} \rightarrow$ " 3 to the fourth power" means " 4 factors of 3 "
$3^{4}=3 \cdot 3 \cdot 3 \cdot 3$
$=81$
a. $\quad 10^{3}$ means " \qquad factors of \qquad ," therefore, $10^{3}=$ \qquad .
b. $\quad 2^{4}$ means " \qquad factors of \qquad ," therefore, $2^{4}=$ \qquad .
c. $\quad 9^{2}$ means " \qquad factors of \qquad ," therefore, $9^{2}=$ \qquad .
6. One of the Laws of Exponents tells us that $\frac{x^{a}}{x^{b}}=x^{a-b}$.

- This means that when you divide two expressions that have the same variable, you subtract the exponents.
- Therefore, $\frac{x^{7}}{x^{2}}=x^{5}$ and $\frac{x^{4}}{x^{1}}=x^{3}$

Use this Law of Exponents to write an equivalent expression for the following quotients:
a. $\frac{x^{9}}{x^{5}}=$ \qquad b. $\frac{x^{24}}{x^{11}}=$ \qquad c. $\frac{x^{6}}{x^{5}}=$
\qquad
7. A long time ago you learned that any time you divide a number by itself, the quotient is 1 :

$$
\frac{4}{4}=1, \quad \frac{-13}{-13}=1, \quad \text { and } \quad \frac{212}{212}=1
$$

The same result happens even when you divide a variable (with an exponent) by itself:

$$
\frac{x^{9}}{x^{9}}=1, \quad \frac{x^{2}}{x^{2}}=1, \quad \text { and } \quad \frac{x^{6}}{x^{6}}=1 .
$$

But remember, the Law of Exponents that we used in question 6 (above) also tells us that when we are dividing the same variable, we can subtract the exponents to create an equivalent expression. So now we can say the following:

- Using that Law of Exponents, we know that $\frac{x^{9}}{x^{9}}=x^{0} \rightarrow$ but we also know that $\frac{x^{9}}{x^{9}}=1$
- Using that Law of Exponents, we know that $\frac{x^{2}}{x^{2}}=x^{0} \rightarrow$ but we also know that $\frac{x^{2}}{x^{2}}=1$
- Using that Law of Exponents, we know that $\frac{x^{6}}{x^{6}}=x^{0} \quad \rightarrow$ but we also know that $\frac{x^{6}}{x^{6}}=1$
a. Complete the following sentence: Based on the information above, I can conclude that $x^{0}=$ \qquad . In other words, anything to the zero power will always equal \qquad .

