1. In previous math classes you worked with **linear functions**: those of the form y = mx + b. With our function notation, these **linear functions** will now often be written as f(x) = mx + b.

Complete the table below and use the resulting ordered-pairs to create the graph for $f(x) = \frac{1}{2}x - 3$.

X	f(x)				
-4	-5				
-2					
0					
2					
4					

$$f(x) = \frac{1}{2}x - 3$$

$$f(-4) = \frac{1}{2}(-4) - 3$$

$$= -2 - 3$$

$$= -5$$

2. Complete the table below and use the resulting ordered-pairs to create the graph for g(x) = 5 - 3x

x	g(x)
0	
1	
2	

3. Analyze the following tables and then answer the questions that follow.

f(x)	=	$\frac{1}{2}x$

$$g(x) = \frac{1}{3}x$$

$$h(x) = \frac{1}{4}x$$

f(x)	$f(x) = \frac{1}{2}x$		$g(x) = \frac{1}{3}x$		h(x)	$=\frac{1}{4}x$
x	f(x)		x	g(x)	x	h(x)
-100	-50		-15	-5	-40	-10
-6	-3		-6	-2	-12	-3
4	2		3	1	4	1
10	5		12	4	44	11
18	9		33	11	100	25

- a. Multiplying by ½ has the same result as
- b. Multiplying by 1/3 has the same result as
- c. Multiplying by 1/4 has the same result as
- d. Multiplying by $^{1}/_{x}$ has the same result as