Algebra 1 -- Module 1: Functions
F-2.3: The m\&m Game

Name $\qquad$
Pd $\qquad$ Date $\qquad$
The m\&m Game
Through a strange and crazy set of coincidences, our class has become host to a large number of radioactive $\mathrm{m} \& \mathrm{~ms}$. Your job is to model the remaining number of radioactive m\&ms as we shake and remove the edible ones.

Directions:
A. Count the total number of $m \& m s$ and place all into your cup. Record the initial number of $\mathrm{m} \& \mathrm{~ms}$ here $\qquad$ and in the table below (this is trial 0 in your table below)
B. Shake your m\&ms and pour them out onto your desk or table: any m\&m that is face down (the " $m$ " isn't showing) is no longer radioactive and can be safely removed! Put these aside.

* Note: if it isn't radioactive, you can eat it!
C. Count the remaining (radioactive) m\&ms and place them back into your cup (be sure to record the number that are still radioactive-each time you do this represents a new trial).
D. Repeat steps 2 and 3 until two or fewer m\&ms remain.
E. Graph the function $N(x)$, where $x$ is the number of trials and $N(x)$ is the number of remaining $\mathrm{m} \& \mathrm{~ms}$.

| $\boldsymbol{x}$ <br> (trial) | $\boldsymbol{N ( x )}$ <br> (\# of radioactive m\&ms) |
| :---: | :---: |
| 0 |  |
| 1 |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |



Next, answer the following questions on the next page.
$\qquad$
$\qquad$
$\qquad$

1. What does the $x$-axis measure? What are its units?
2. What does the $y$-axis measure? What are its units?
3. What is the contextual meaning of $N(3)$ ?
4. What is the value of $N(3)$ ?
5. How could you find $N(3)$ from your table?
6. How could you find $N(3)$ from your graph?
7. Approximately how many trials does it take for the number of m\&ms to be about 20 ? Should our answer be an $x$ or $y$ value?
8. Approximately how many trials does it take for the number of m\&ms to be less than $1 / 4$ of what we began with?
